

December 2, 2014

Ms. Stephanie Linebaugh U.S. EPA – Region 5 77 West Jackson Blvd (SR-6J) Chicago, Illinois 60604-3590

RE: Sauget Area 2 Site – October 3, 2002 Unilateral Administrative Order Groundwater Operable Unit

Dear Stephanie:

Attached, is the September 2014 Quarterly Groundwater Monitoring Event Report for the GMCS.

Any questions, please advise.

Sincerely,

Project Coordinator

cc: Lisa Cundiff - CH2M Hill

Paul Lake - Illinois EPA (2 copies)

Bill Johnson - Solutia

November 20, 2014

Project No.: 063-9678

Mr. Bill Johnson – 2N Solutia Inc. 575 Maryville Centre Drive St. Louis, MO 63141

RE:

SEPTEMBER 2014 QUARTERLY GROUNDWATER MONITORING EVENT SAUGET AREA 2 – SITE R. SAUGET, ILLINOIS

Dear Mr. Johnson:

Golder Associates Inc. (Golder) is pleased to submit this letter report to Solutia Inc. (Solutia) summarizing the September 2014 Quarterly Groundwater Monitoring Event at Sauget Area 2 – Site R (Site). At the request of Solutia, Golder conducted the quarterly sampling event at the Site from September 22, 2014 through September 25, 2014. The work included the collection of groundwater samples from the 12 monitoring wells in accordance with the Field Sampling Plan (FSP; URS, 2003). This letter summarizes the work performed during the quarterly event and includes Detection Summary Tables (Appendix A) and the Data Validation Report (Appendix B). The Lenexa, Kansas and St. Rose, Louisiana locations of Pace Analytical Services, Inc. (Pace Analytical) and the Savannah, Georgia location of TestAmerica performed analytical testing of the groundwater samples. Laboratory reports are not included in this letter report. Laboratory reports were forwarded directly from Pace Analytical to Solutia.

GROUNDWATER SAMPLING

Groundwater samples were collected from four monitoring well clusters. Each well cluster consists of three two-inch diameter wells, with one well screened in the Shallow Hydrogeologic Unit, one well screened in the Middle Hydrogeologic Unit, and one well screened in the Deep Hydrogeologic Unit. Groundwater was purged and sampled from the 12 wells with a centrifugal positive pressure pump and dedicated polyethylene tubing. Field measurements of pH, specific conductivity, turbidity, and temperature were recorded for all groundwater samples. Purging continued until the turbidity reached or fell below five nephelometric turbidity units (NTUs), or stabilization of field parameters was achieved for one hour, whichever occurred first. Prior to the purging and sampling of the monitoring wells, a synoptic round of water level measurements of the 12 wells was completed.

Groundwater samples were collected directly into laboratory-provided, pre-preserved sample bottles and packed on-Site following chain-of-custody protocol. The following laboratory tests were requested for the groundwater samples and associated quality assurance/quality control (QA/QC) samples:

- Volatile Organic Compounds (United States Environmental Protection Agency USEPA Method 8260B)
- Semi-Volatile Organic Compounds (USEPA Method 8270C)
- Organochlorine Pesticides (USEPA Method 8081A)
- Chlorinated Herbicides (USEPA Method 8151A)
- Metals (USEPA Method 6010B/7470A)
- Total Organic Carbon (SW846 Method 9060/SM 5310C)

Total Dissolved Solids (USEPA Method 160.1/SM 2540C)

After collection, the groundwater samples were delivered to the Pace Analytical Service Center in Florissant, Missouri. The samples to be analyzed for volatile organic compounds, semi-volatile organic compounds, metals, total organic compounds, total dissolved solids, and general chemistry parameters were transported to the Lenexa, Kansas laboratory via courier. The samples to be analyzed for chlorinated pesticides were shipped for next day delivery to the St. Rose, Louisiana facility by the Pace Analytical Service Center in Florissant, Missouri. The samples to be analyzed for chlorinated herbicides were shipped for next day delivery to the TestAmerica Savannah, Georgia facility by the Pace Analytical Service Center in Florissant, Missouri.

Groundwater samples were designated by the well number. QA/QC samples consisted of two field duplicates (DUP-1 and DUP-2) collected at BWMW-4M and BWMW-2M, respectively, a matrix spike and matrix spike duplicate (MS/MSD) collected at BWMW-1M, two rinsate blanks (RB-1 and RB-2) collected following the collection of samples at BWMW-2S and BWMW-1M, two field blanks (FB-1 and FB-2), and two trip blanks. Level III data validation was performed on all the analytical data packages, and Level IV data validation was performed on ten percent of the analytical data packages. Some analytical data were qualified; however, no data were rejected.

Sampling equipment was decontaminated prior to mobilizing to the Site, between sample locations, and prior to demobilizing from the Site. Non-dedicated sampling equipment was decontaminated between samples with non-phosphatic detergent solution and a potable water sprayer. Purged groundwater and decontamination water were containerized in an on-Site vertical storage poly-tank.

Work was performed in general accordance with the January 31, 2003 Sauget Area 2 Groundwater Migration Control System FSP and Quality Assurance Project Plan.

Please contact us if you have any questions about the work or require additional information.

Sincerely,

GOLDER ASSOCIATES INC.

Imal Dehake

Amanda W. Derhake, Ph.D., P.E.

Project Environmental Engineer

Mark N. Haddock, R.G., P.E. Associate, Senior Geological Engineer

Mach N. efallal

Attachments

Appendix A - Detection Summary Tables

Appendix B - Data Validation Report

APPENDIX A

DETECTION SUMMARY TABLES

Table 1 Summary of Validated Groundwater Sample Data - Organics (September 2014 Sampling Event) Site R Quarterly Groundwater Monitoring Solute Inc - Sauget, Illinois

Monitoring Well		BWMW-1S	MDL	BWMW-1M	MDL	BWMW-1D	MDL	BWMW-2S	MDL	_BWMW-2M	MDL	BWMW-2D	MDL
Lab Sample ID		60178733017	7	- 60178733016		60178733015		60178733014		60178733013		60178733012	ļ
Date Sampled		9/25/2014		9/25/2014		9/25/2014		9/24/2014		9/24/2014		9/24/2014	
Time Sampled		12 51		10 18		11 00		14 42		10 02		11 08	
Volatile Organic Compounds (USEPA Meth	od 8260B)												
Date Analyzed		9/29/2014	1	9/29/2014		9/29/2014		9/29/2014		9/29/2014		9/29/2014	
Analyte	CAS No	(ug/	L)	(ug/L)		(ug/L)		(ug/L)		(ug/L)		(ug/L)	
Benzene	71-43-2	6,730	500	391	25 0	92.7 J	50 0	1 O U	10		12.5	778	25 0
Chlorobenzene	108-90-7	85,200	500	3,680	25 0	7,740	50 0	154	10		12 5	4,030	25 0
Ethylberzene	100-41-4	500 U	500	25 O U	25 0	50 0 U	50 0	100	10		12 5	91.8	25 0
Toluene	108-88-3	500 U	500	25 O U	25 0	50 O U	50 0	1 0 U	10		12 5	67.9	25 0 25 0 25 0 25 0
Xylenes, Total	1330-20-7	1500 U	1500	75 0 U	75 0	150 U	150	3 O U	30	37 5 UJ	37 5	202	75 0
Semi-Volatrie Organic Compounds (USEPA	Method 8270C)			-									
Date Prepared		9/30/2014		9/30/2014		9/30/2014		9/30/2014		9/30/2014		9/30/2014]
Date Analyzed	-	10/3/2014		10/2/2014		10/2/2014		10/6/2014		10/2/2014		10/2/2014	1
Analyte	CAS No	(ug/	L)	(ug/L)		(ug/L)		(ug/L)		(ug/L)		(ug/L)	
1,2-Dichlorobenzene	95-50-1	3 1 U	3 1	0 60 U	0 60	23 J	0 60	20 J	0 59		5 5	70 0	5 9
1,3-Dichlorobenzene	541-73-1	5 2 U	5 2		10	1 0 U	1 0	1 O U	10	,	9 4	18.6 J	10 1
1,4-Dichlorobenzene	106-46-7	60 J	38	9 3 J	0 76	81 J	0 75	1.3 J	0 73	41 B J	69		74
2 4-Dimethylphenol	105-67-9	59U	5 9	1 2 Ü	1 2	1 2 U	1 2	1 1 U	11	10 6 U	106	99.7 J	11 4
2-Chlorophenol	95-57-8	67 8	5 2	1.8 J	10	37 J	10	0 99 U	0 99	9 3 U	93		10 0
3 & 4 Methylphenol	15831-10-4	43U	4 3	0 86 U	0 86	0 85 U	0 85	0 83 U	0.83	7 8 U	78	27.8 J	8 4
4-Chlaro-3-methylphenol	59-50-7	68U	68	1 3 Ŭ	13	1 3 U	1 3	1 3 U	13	12 2 U	12.2	13 1 U	13 1
4-Chloroaniline	106-47-8	44 5 J	3 1	278 D	62	24 J	0 61	10 9 J	0 60	8,420 JD	112		301
Acenaphthene	83-32-9	3 3 U	33	0 65 U	0 65	0 64 U	0 64	0 63 U	0 63	5 9 U	5 9	63U	63
Anthracene	120-12-7	6 1 U	6 1	1 2 U	1 2	1 2 Ü	12	1 2 U	12	11 0 U	11 0	11 8 U	11 8
Benzo[a]anthracene	56-55-3	5 O U	50	0 99 U	0 99	0 98 U	0 98	0 96 U	0 96	9 O U	90		97
Benzo[a]pyrene	50-32-8	5 3 U	53	1 1 U	11	1 0 U	10	1 0 U	10	9 6 U	96		10 3
Benzo[k]fluoranthene	207-08-9	4 0 U	40	0 79 U	0 79	0 78 U	0 78	0 77 Ü	077	72U	7 2	770	77
Chrysene	218-01-9	47U	47	0 92 U	0 92	0 91 U	0 91	0 89 U	0 89	8 4 U	8 4	9 O U	9 0
Fluoranthene	206-44-0	6 3 U	63	1 3 U	13	1 2 U	12	1 2 U	1 2	11 4 U	11 4	12 3 U	123 70
Fluorene	86-73-7	3 6 U	36	0 71 U	071	0 71 U	071	0 69 U	0 69	6 5 U	6.5	7 O U	70
Naphthalene	91-20-3	53 9 J	3 2	0 64 U	0 64	0 63 U	0 63	0 62 U	0 62	5 8 U	58	6 2 U	62 87
Phenanthrene	85-01-8	4 5 U	45	0 89 U	0 89	0 88 U	0 88	0 86 U	0 86	8 1 U	8 1	87U	87
Phenal	108-95-2	127 J	28	0 56 U	0 56	0 55 U	0 55	0 54 U	0 54	5 1 U	5 1	5 5 U	5 5
Pyrene	129-00-0	7 9 U	79	16U	16	1 6 U	16	1 5 U	15	14 3 U	14 3	15 4 U	154
 				ot detected in sem									

Parameters not listed were not detected in samples

Results in bold italics denote detections

MDL - Method Detection Limit

Flags and Qualifiers

- U Analyte was not detected at or above the Method Detection Limit (MDL)
- UJ Analyte was not detected at or above the Method Detection Limit (MDL), the detection limit is estimated
- J Result is an estimated value
- JP Result is an estimated value, the lower of the two values is reported when the % difference between the results of two GC columns is greater than 40%
- P The lower of the two values is reported when the % difference between the results of two GC columns is greater than 40%
- D Compound analyzed at a dilution
- JD Compound analyzed at a dilution result is an estimated value

 Prepared by LAB
 Date
 10/21/2014

 Checked by JSI
 Date
 10/31/2014

 Reviewed by AWD
 Date
 11/17/2014

Table 1 Summary of Validated Groundwater Sample Data - Organics (September 2014 Sampling Event) Site R Quarterly Groundwater Monitoring Solutia Inc. - Sauget, Illinois

COLUM	1110	- Jauger,	TIM KAG

Monitoring Well	1	BWMW-1S	MDL	BWMW-1M	MDL	BWMW-1D	MDL	_BWMW-2S	MDL	BWMW-2M	MDL _	. BWMW-2D.	MDL _
Lab Sample ID	-	60178733017		60178733016		60178733015		60178733014		60178733013		60178733012	
Date Sampled		9/25/2014		9/25/2014		9/25/2014		9/24/2014		9/24/2014		9/24/2014	
Time Sampled		12 51		10 18		11 00		14 42		10 02		11.08	
Organochlorine Pesticides (USEPA Meth	od 8081A)									-			
Date Prepared		9/30/2014		9/30/2014		9/30/2014		9/30/2014		9/30/2014		9/30/2014	
Date Analyzed		10/17/2014		10/17/2014		10/17/2014		10/17/2014		10/17/2014		10/17/2014	
Analyte	CAS No	(ug/L)											
4,4'-DDD	72-54-8	0 050 U	0 050	0 050 U	0 050	0 050 U	0 050	0 050 ับ	0 050	0 050 U	0 050	0 050 U	0 050
4.4'-DDE	72-55-9	0 050 ับ	0 050	0 052 J	0 050	0 050 U	0 050						
4,4'-DDT	50-29-3	0 050 U	0 050										
alpha-BHC	319-84-6	0 025 U	0 025										
alpha-Chlordane	5103-71-9	0 025 U	0 025	0 054 P	0 025	0 025 U	0 025	0 025 U	0 025	0 025 U	0 025	0 028 J	0 025
beta-BHC	319-85-7	0 025 U	0 025	0 086 P	0 025	0 025 U	0 025	0 025 U	0 025	0.10 P	0 025	0 025 U	0 025
delta-BHC	319-86-8	0 025 U	0 025	0 028 J	0 025	0 025 U	0 025						
Dieldnn	60-57-1	0 050 U	0 050	0 13	0 050	0 050 U	0 050	0 050 U	0 050	0.35 JP	0 050	0 091 J	0 050
Endosulfan I .	959-98-8	0 025 U	0 025	0.084 P	0 025	0 025 U	0 025	0 025 U	0 025	0 044 J	0 025	0.075 P	0 025
Endosulfan II	33213-65-9	0 050 U	0 050	0 051 J	0 050	0 050 U	0 050	0 050 U_	0 050	0 12 JP_	0 050	0 38	0 050
Endosulfan sulfate	1031-07-8	0 050 U	0 050	0 065 J	0 050	0 050 U	0 050	0 050 U	0 050	0 063 J	0 050	0 14	0 050
Endnn	72-20-8	0 050 U	0 050										
Endrin aldehyde	7421-93-4	0 050 U	0 050	0 054 J	0 050	0 050 U	0 050						
gamma-BHC (Lindane)	58-89-9	0 025 U	0 025	0 025{U	0 025	0 025 U	0 025						
gamma-Chlordane	5103-74-2	0 030 J	0 029	0.14 P	0 029	0 029 U	0 029	0 029 U	0 029	0 029 UJ	0 029	0 029 U	0 029
Heptachlor	76-44-8	0 025 U	0 025	0.049 J	0 025								
Heptachlor epoxide	1024-57-3	0 025 U	0 025	0 055 P	0 025	0 025 U	0 025	0 025 U	0 025	0 15 P	0 025	0.20 P	_ 0 025
Chlorinated Herbicides (USEPA Method 8	8151A)			-									, , ,
Date Prepared		10/2/2014		10/2/2014		10/2/2014		9/29/2014		9/29/2014		9/29/2014	1
Date Analyzed		10/6/2014		10/6/2014		10/6/2014		10/6/2014		10/6/2014		10/6/2014]
Analyte	CAS No	(ug/L)											
Dictiorprop	120-36-5	16	0 17	0 18 U	0 18	0 16 U	0 16	0 17 U	0_17	0 17 U	0 17	0 17 U	0 17
Total Organic Carbon (USEPA Method 90	060/SM 5310C)												
Date Analyzed		10/9/2014		10/9/2014		10/9/2014		10/9/2014		10/9/2014		10/9/2014	1
Analyte	CAS No	(mg/L)	,	(mg/L)	·	(mg/L)		(mg/L)		(mg/L)		(mg/L)	
Total Organic Carbon (TOC)	7440-44-0	11 6 D	1 00	51	0 50	51	0 50	16 7 D	1 00	14 8 D	10	221 D	12 5

Parameters not listed were not detected in samples

Results in bold Italics denote detections MDL - Method Detection Limit

Flags and Qualifiers

U - Analyte was not detected at or above the Method Detection Limit (MDL)

- UJ Analyte was not detected at or above the Method Detection Limit (MDL) the detection limit is estimated
- J Result is an estimated value
- JP Result is an estimated value, the lower of the two values is reported when the % difference between the results of two GC columns is greater than 40%
- P The lower of the two values is reported when the % difference between the results of two GC columns is greater than 40%
- D Compound analyzed at a dilution

Prepared by LAB Date 10/21/2014 Date 10/31/2014 Checked by JSI Reviewed by AWD Date 11/17/2014

Table 1 Summary of Validated Groundwater Sample Data - Organics (September 2014 Sampling Event) Site R Quarterly Groundwater Monitoring Solutia Inc - Sauget, Illinois

- · · ·													
Monitoring Well		BWMW-3S	MDL	BWMW-3M	MĎL	BWMW-3D	MDL	BWMW-4S	MDL	. BWMW-4M	MDL.	BWMW-4D	MDL
Lab Sample ID		60178733008		60178733007		60178733006		60178733005		60178733004		60178733003	
Date Sampled		9/23/2014		9/23/2014		9/23/2014		9/22/2014		9/22/2014		9/22/2014	
Time Sampled		13 47		12 53		11 05		13 46		11 33		12 17	
Volatile Organic Compounds (USEPA Meth	od 8260B)									•		,	
Date Analyzed		9/29/2014		9/29/2014		9/29/2014		9/29/2014		9/29/2014		9/29/2014	
Analyte	CAS No.	(ug/L)											
Benzene	71-43-2	19 5	2.5	350	25 0	283	12 5	0 94 J	0.50	29.2	2 5	2 5 U	25 25
Chlorobenzene	108-90-7	187	2.5	4,870	25 0	2,870	12 5	15 5	0 50	548	2.5	476	2 5
Ethylberizene _	100-41-4	2 5 U	2.5	25 O U	25 0	12.5 U	12 5	0 50 U	0 50	2 5 U	2 5	2 5 U	2 5
Toluene	108-88-3	2 5 U	2.5	25 0 U	25 0	12 5 U	12 5	0 50 U	0 50	.25U	2 5	2 5 U	25
Xylenes, Total	1330-20-7	7 5 U	7 5	75 0 U	75 0	37 5 U	37 5	1 5 U	15	75U	7 5	7 5 U	7 5
Semi-Volatile Organic Compounds (USEPA	Method 8270C)				_					' ' ,		'	' '
Date Prepared	-	9/25/2014		9/25/2014		9/25/2014		9/25/2014		9/25/2014		9/25/2014	
Date Analyzed		10/6/2014		9/26/2014		9/26/2014		9/26/2014		9/26/2014		9/26/2014	
Analyte	CAS No	(ug/L)											
1,2-Dichlorobenzene	95-50-1	15 J	0 60	13 J	0 57	117	0 55	0 55 U	0 55	10 3	0 55	232 D	28
1,3-Dichlorobenzene	541-73-1	1 0 U	10	47 J	0 98	24 J	0 94	0 94 U	0 94	51 J	0 94	22.1	0 94
1,4-Dichlorobenzene	106-46-7	3.7 J	0 75	97 J	0 72	50 0	0 69	15 J	0 69	27.0	0 69	80.4	0 69
2.4-Dimethylphenol	105-67-9	1 2 U	1 2	110	11	1 1 U	1 1	1 1 U	11	1 1 U	1 1	1 1 U	11
2-Chlorophenol	95-57-8	10U	10	41 J	0 97	0 93 U	0 93						
3 & 4 Methylphenol	15831-10-4	0 85 U	0 85	0 81 U	0 81	0 78 U	0 78						
4-Chloro-3-methylphenol	59-50-7	1 3 U	13	1 3 U	1 3	1 2 U	1 2	1 2 U	1 2	1 2 U	12	1 2 U	1 2
4-Chloroaniline	106-47-8	8.0 J	0 61	11,400 D	117	7,720 D	56 0	0 56 U	0 56	123 D	1 1	31 J	0 56
Acenaphthene	83-32-9	1.7 J	0 64	0 61 U	0 61	0 59 U	0 59						
Anthracene	120-12-7	2.5 J	1 2	11U	1.1	1 1 U	11	1 1 U	1 1	1 1 U	1 1	1 1 U	11
Benzo(a)anthracene	56-55-3	2.3 J	0 98	0 94 U	0 94	0 90 U	0 90						
Benzo(a)pyrene	50-32-8	1.4 J	10	10U	10	0 96 U	0 96	0 96 U	0 96	0 96 U	0 96	0 96 Ú	0 96
Benzo(k)fluoranthene	207-08-9	15 J	0 78	0 75 U	0 75	0 72 U	0 72						
Chrysene	218-01-9	2.4 J	0 91	0 88 U	0 88	0 84 U	0.84	0 84 U	0 84	0 84 U	0 84	0 84 U	0.84
Fluoranthene	206-44-0	8.1 J	12	1 2 U	12	1 1 U	11	1 1 U	11	11U	11	1 1 U	11
Fluorene	86-73-7	1.6 J	071	0 68 U	0 68	0 65 U	0 65						
Naphthalene	91-20-3	0 63 U	0 63	0 60 U	0 60	0 58 U	0 58						
Phenanthrene	85-01-8	10 4 J	0 88	0 84 U	0 84	0 81 U	0 81	0 81 U	0.81	0 81 U	0.81	0 81 U	0 81
Phenol	108-95-2	0 55 U	0 55	0 53 U	0 53	0 51 U	0 51	0 51 U	0.51	0 51 U	0 51	0 51 U	0 51
Pyrene	129-00-0	62 J	16	1 5 U	15	14 U	14	1 4 U	14	1 4 U	14	1 4 U	14

Parameters not listed were not detected in samples

Results in bold italics denote detections

MDL - Method Detection Limit

Flags and Qualifiers

- U Analyte was not detected at or above the Method Detection Limit (MDL)
- UJ Analyte was not detected at or above the Method Detection Limit (MDL), the detection limit is estimated
- J Result is an estimated value
- JP Result is an estimated value, the lower of the two values is reported when the % difference between the results of two GC columns is greater than 40%
- P The lower of the two values is reported when the % difference between the results of two GC columns is greater than 40%
- D Compound analyzed at a dilution
- JD Compound analyzed at a dilution, result is an estimated value

 Prepared by LAB
 Date 10/21/2014

 Checked by JSi
 Date 10/31/2014

 Reviewed by AWD
 Date 11/17/2014

Table 1 Summary of Validated Groundwater Sample Data - Organics (September 2014 Sampling Event) Site R Quarterly Groundwater Monitoring

Solutia Inc - Sauget Illinois

Monitoring Well		BWMW-3S	_MDL	BWMW-3M	MDL	_ BWMW-3D	MDL	BWMW-4S	MDL	BWMW-4M	_MDL	BWMW-4D	_MDL_
Lab Sample ID		60178733008		60178733007		60178733006		60178733005		60178733004		60178733003	
Date Sampled		9/23/2014		9/23/2014		9/23/2014		9/22/2014		9/22/2014		9/22/2014	
Time Sampled	-	13 47		12 53		11 05		13 46		11 33		12 17	
Organochiorine Pesticides (USEPA M	ethod 8081A)			•		-					,	, ,,	
Date Prepared		9/26/2014		9/26/2014		9/26/2014		9/26/2014		9/26/2014		9/26/2014	
Date Analyzed		10/17/2014		10/17/2014		10/17/2014		10/17/2014		10/17/2014		10/17/2014	
Analyte	CAS No.	(ug/L)											
4,4'-DDD	72-54-8	0 050 U	0 050	0 057 J	0 050	0 050 U	0 050	0.11	0 050		0 050	0 050 U	0 050
4,4'-DDE	72-55-9	0 050 U	0 050	0 15 P	0 050	0 091 J	0 050	0 050 U	0.050	0.13	0 050	0.066 J	0 050
4,4'-DDT	50-29-3	0 050 U	0 050	0 050 U	0 050	0 17 J	0 050	0 050 U	0 050	0 050 U	0 050	0 050 U	0 050
alpha-BHC	319-84-6	0 025 U	0 025	0 025 U	0 025	0 21 J	0 025	0 025 U	0 025	0 025 U	0 025	0 025 U	0 025
alpha-Chlordane	5103-71-9	0 025 U	0 025	0 039 J	0 025	0 025 U	0 025						
beta-BHC	319-85-7	0 075 P	0 025	0 025 U	0 025	0 025 U	0 025	0 025 U	0 025	0.065 JP	0 025	0 025 U	0 025
delta-BHC	319-86-8	0 025 U	0 025	0 025 UJ	0 025	0 025 Ú	0 025						
Dieldnn	60-57-1	0 050 U	0 050	0 41	0 050	0 050 U	0 050	0 050 U	0 050	0 050 UJ	0 050	0 050 U	0 050
Endosulfan I	959-98-8	0 025 U	0 025	0 29 P	0 025	0.13 J	0 025	0 025 U	0 025	0 11	0 025	0 025 U	0 025
Endosulfan II	33213-65-9	0 050 U	0 050	0 050 U	0 050	0.39 JP	0 050	0 050 U	0 050	0 050 U	0 050	0 050 U	0 050
Endosulfan sulfate	1031-07-8	0 050 U	0 050	0 11 P	0 050	0 092 J	0 050	0 050 U	0 050	0.061 J	0 050	0 050 U	0 050
Endnn	72-20-8	0 050 U	0 050	0.089 J	0 050	0 050 U	0 050						
Endnn aldehyde	7421-93-4	0 050 U	0 050	0 050 U	0 050	0 050 じ	0 050	0 050 U	0 050	0 050 U	0 050	0 050 U	0.050
gamma-BHC (Lindane)	58-89-9	0.044 J	0 025	0 025 U	0 025	0 025 U	0 025	0 036 J	0 025	0 025 U	0 025	0 025 U	0 025
gamma-Chlordane	5103-74-2	0 029 U	0 029	0 34 P	0 029	0 29 U	0 29	0 029 U	0 029	0.074 JP	0 029	0 050 J	0 029
Heptachlor	76-44-8	0 025 U	0 025	0 025 UJ	0 025	0 025 U	0 025						
Heptachior epoxide	1024-57-3	0 025 U	0 025	0.29 P	0 025	0 025 じ	0 025	0.072	0 025	0 13	0 025	0 025 U	0 025
Chlorinated Herbicides (USEPA Methi	od 8151A)								-				
Date Prepared		9/25/2014		9/25/2014		9/25/2014		9/25/2014		9/25/2014		9/25/2014	
Date Analyzed		9/27/2014		9/27/2014		9/27/2014		9/27/2014		9/27/2014		9/27/2014	
Analyte	CAS No	(ug/L)		(ug/L)		(ug/L)		(ug/L)		_ (ug/L)		(ug/L)	
Dichlorprop	120-36-5	0 17 U	0 17	0 16 U	0 16	0 18 U	0 18						
Total Organic Carbon (USEPA Method	9060/SM 5310C)												
Date Analyzed		10/8/2014		10/8/2014		10/8/2014		10/8/2014		10/8/2014		10/8/2014	
Analyte	CAS No	(mg/L)											
Total Organic Carbon (TOC)	7440-44-0	6.5	0 50	26 3 D	20	11.8 D	10	2 9	0 50	36	0 50	2.7	0.50

Parameters not listed were not detected in samples

Results in bold Italics denote detections

MDL - Method Detection Limit

Flags and Qualifiers

- U Analyte was not detected at or above the Method Detection Limit (MDL)
- U.J.- Analyte was not detected at or above the Method Detection Limit (MDL), the detection limit is estimated
- J Result is an estimated value
- JP Result is an estimated value, the lower of the two values is reported when the % difference between the results of two GC columns is greater than 40%
- P The lower of the two values is reported when the % difference between the results of two GC columns is greater than 40%
- D Compound analyzed at a dilution

 Prepared by LAB
 Date 10/21/2014

 Checked by JSi
 Date 10/31/2014

 Reviewed by AWD
 Date 11/17/2014

Table 2 Summary of Validated Groundwater Sample Data - Inorganics (September 2014 Sampling Event) Site R Quarterly Groundwater Monitoring Solute Inc - Sauget, Illinois

Monitoring Well		BWMW-1S	MDL	BWMW-1M	MDL	BWMW-1D	MDL	BWMW-2S	MDL	BWMW-2M	MDL'	BWMW-2D	MDL
Lab Sample ID		60178733017		60178733016		60178733015		60178733014		60178733013		60178733012	
Date Sampled		9/25/2014		9/25/2014		9/25/2014		9/24/2014		9/24/2014		9/24/2014	
Time Sampled		12 51		10 18		11 00		14 42		10 12		11 08	
Mercury (USEPA Method 7470A)													
Date Prepared		10/6/2014		10/6/2014		10/6/2014		10/6/2014		10/6/2014		10/6/2014	Î
Date Analyzed		10/7/2014		10/7/2014		10/7/2014		10/7/2014		10/7/2014		10/7/2014	
Analyte	CAS No	(ug/L)		(ug/L)									
Metals (USEPA Method 6010B)	-												-
Date Prepared		9/29/2014		9/29/2014		9/29/2014		9/29/2014		9/29/2014		9/29/2014	
Date Analyzed		10/3/2014		10/3/2014		10/3/2014		10/3/2014		10/3/2014		10/3/2014	
Analyte	CAS No	(ug/L)		(ug/L)									
Arsenic	7440-38-2	60 2	34	3 4 U	34	4.3 J	3 4	3 4 U	3 4	34 U	34	6.4 J	3 4
Banum	7440-39-3	175	0 61	482	0 61	382	0 61	253	0 61	904	0 61	2,020	06
Chromium	7440-47-3	0 69 U	0.89	0 89 U	0 89		0 89		0 89	2.6 J	0 89	0 89 U	0.8
Copper	7440-50-8	10 0 U	0 85	10 O U	0 85	10 0 U	0 85	10 0 U	0 85	10 0 U	0 85	10 0 U	0.8 0.8
Lead	7439-92-1	41 J	22	2 2 U	2 2	3.6 J	2 2	4.3 J	2 2	2 2 UJ	22	50 J	. 22
Nickel	7440-02-0	15 J	0 95	15 J	0 95	0 95 U	0 95	4.3 J	0 95	31 J	0 95	53	0 9
Silver	7440-22-4	18 3	14	1 4 U	14	14U	1 4	19 J	1 4	1.5 J	14	1 4 U	14
Total Dissolved Solids (USEPA Metho	od 160.1/SM 2540C)		-									•	
Date Analyzed		10/1/2014		10/1/2014		10/1/2014		10/1/2014		10/1/2014		10/1/2014	
Analyte	CAS No.	(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)	, and the second	(mg/L)	
Total Dissolved Solids (TDS)	-	1,000	50	967	5 0	1,050	50	1,480	50	1,030	50	1,810	5 (

Parameters not listed were not detected in samples

Results in bold italics denote detections

MDL - Method Detection Limit

Flags and Qualifiers

U - Analyte was not detected at or above the Method Detection Limit (MDL)

UJ - Analyte was not detected at or above the Method Detection Limit (MDL), the detection limit is estimated

J - Result is an estimated value

D - Compound analyzed at a dilution

 Prepared by LAB
 Date 10/21/2014

 Checked by JSI
 Date 10/31/2014

 Reviewed by AWD
 Date 11/17/2014

Table 2 Summary of Validated Groundwater Sample Data - Inorganics (September 2014 Sampling Event) Site R Quarterly Groundwater Monitoring Solutia Inc. - Sauget Illinois

Monitoring Well	-	BWMW-3S	MDL	BWMW-3M	MDL	BWMW-3D	MDL	BWMW-4S	MDL	BWMW-4M	MÓL	BWMW-4D	MÔL
Lab Sample ID		60178733008		60178733007		60178733006		60178733005		60178733004		60178733003	
Date Sampled		9/23/2014		9/23/2014		9/23/2014		9/22/2014		9/22/2014		9/22/2014	
Time Sampled		13 47		12 53		11 05		13 46		11 33		12 17	
Mercury (USEPA Method 7470A)		<u> </u>	•										
Date Prepared		10/6/2014		10/6/2014		10/6/2014		10/6/2014		10/6/2014		10/6/2014	
Date Analyzed		10/7/2014		10/7/2014		10/7/2014		10/7/2014		10/7/2014		10/7/2014	
Analyte	CAS No	(ug/L)		(ug/L)									
Metals (USEPA Method 6010B)		1 :	_										
Date Prepared		9/29/2014		9/29/2014		9/29/2014		9/29/2014		9/29/2014		9/29/2014	
Date Analyzed		10/3/2014		10/3/2014		10/3/2014		10/3/2014		10/3/2014		10/3/2014	
Analyte	CAS No	(ug/L)		(ug/L)		(ug/Ĺ)		(ug/L)		(ug/L)		(ug/L)	
Arsenic	7440-38-2	31 2 D	67	55 J	34	3 4 U	34	13 2	3 4	3 4 U	3 4	75 J	3 4
Banum	7440-39-3	307	0 61	922	0 61	1,180	0 61	156	0 61	444	0 61	117	0 61 0 89
Chromium	7440-47-3	18 J	0 89	0 89 U	0 89	0 89 U	0 89	7.4	0 89	0 89 U	0 89	0 89 U	
Copper	7440-50-8	22 4	0 85	10 O U	0 85	10 O U	0 85	10 0 U	0 85	0 85 UJ	0 85	10 O U	0 85
Lead	7439-92-1	44 J	22	4.2 J	22	2 2 U	2 2	31 J	2 2	54 J	22	22	2 2
Nickel	7440-02-0	21 J	0 95	54	0 95	37 J	0 95	3.9 J	0 95	19 J	0 95	2.0 J	0 95
Silver	7440-22-4	1.9 J	14	1 4 U	14	18 J	1 4	2 3 J	1 4	1 4 UJ	1 4	1 4 U	1 4
Total Dissolved Solids (USEPA Method	1 160 1/SM 2540C)												
Date Analyzed	•	9/29/2014		9/23/2014		9/29/2014		9/29/2014		9/29/2014		. 9/29/2014	
Analyte	CAS No	(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)	, and the second	(mg/L)	
Total Dissolved Solids (TDS)	•	1,480	50	1,470	50	1240	50	1,950	50	878	50	777	50

Parameters not listed were not detected in samples

Results in bold Italics denote detections

MDL - Method Detection Limit

Flags and Qualifiers

U - Analyte was not detected at or above the Method Detection Limit (MDL)

UJ - Analyte was not detected at or above the Method Detection Limit (MDL), the detection limit is estimated

J - Result is an estimated value

D - Compound analyzed at a dilution

 Prepared by LAB
 Date 10/21/2014

 Checked by JSI
 Date 10/31/2014

 Reviewed by AWD
 Date 11/17/2014

Table 3 Summary of Validated Groundwater Sample Data Organics (September 2014 Sampling Event) See 8 Quartary Groundwater Montomig Solutar Inc - Sauget Illinois

	Total Organic Carbon (TOC)	Analyte	Date Analyzed	Total Organic Carbo	Artalyto	Date Analyzed	Date Prepared	Chlerinated Herbica	Heptachior epoxide	Heptachlor	gamma-Chlordane	Endosultan sufface	Endosulfan i	Dieldna	della-BHC	Deta-BHC	alpha-Chlordane	44-DDE	Analyte	Date Analyzed	Date Prepared	Organochiorine Per	4-Chloroamine	1,4-Dichlorobenzene	1 3-Dichlorobergene	1 2-Dichloroberzene	Analyta	Date Analyzed	Date Propered	Semi-Voiatile Organ	Xylenes Total	Vinyl chlonde	Toluene	Ethylbenzene	cas-1 2-Dichloroethene	Chlorobergene	Berzene	Acetone	Anskyte	Date Analyzed	Volatile Organic Cor	Time Sampled	Date Sampled	Montagring went	
	(TOC)			otal Organic Carbon (USEPA Method 9080/SM 5310C)				Herinated Herbicides (USEPA Method 8151A)														rgenochlorine Pesticides (USEPA Method 8081A)								m-Volatile Organic Compounds (USEPA Method 8270C)											Mattle Organic Compounds (USEPA Method 82608)				
	7440-44-0	CAS No		O/SM 5310C)	CAS No			(A)8	1024-57-3	1	5103-74-2	1031-07-0	25-626	60-57-1	319-86-6	319-85-7	5103-71-9	72-55-9	CAS No			d 8001A)	106-47-8	100-40-7	541-73 1	95-50-1	CAS No			A Hethod 8270C)	1330-20-7	7:07	108-88-3	100414	156-59-2	108-80-7	71-132	67-64-1	CAS No		nod 8,2608)				
Parameters not lasted were not detected in samples	36	(mg/L)	10/8/2014		(ug/L)	Ц	B/25/2014		0 19 P	0 035 J	0 19 JP	00500	0 18 P	0.0887	0 027 J	0 12 JP	0 036 3	0 25	(J/gu)	10/17/2014	9/26/2014		87 1 0	24 1	187	9.3.7	(Jigu)	9/26/2014	P102/52/6		15U	0500	0500	0 50 U	050	SUBD	37.7	50U	(ug/L)	9/29/2014			9/22/2014	DOT 1	2
d were n	050				L	Ľ			0 025	83	0028	ê	ŝ	8	025	0 025	85	8		Ľ			12	0 75	ē	8	_	L			15	8	0 50	8	9	 	0 50	50					L	S C	5
N detected in sam	7480	(mg/L)	109/2014		(Jygu)	10/6/2014	9/29/2014		0 15 P	0025U	0 027 1	0 074 J	0 027 J	00500	0025 U	0 089 P	0025	0 050 U	(wg/L)	10/17/2014			8,020 JD	1829	10 1 C	590	(mg/L)	10/2/2014	1102/00/6		743	0 91 1	251	6.8	137	2,320 0	284 0	500	(ug/L)	9/29/2014			9/24/2014	2717171	2
- 1	10	L				L			0025	85	0029	000	0025	0050	8	85	835	8	_				120	74	<u>5</u>	59	_	L			15	8	8	8	8	25.0	25	50						E C	5
	050	(mg/L)	PLOZAKAL		(JAPL)	10/5/2014	9/29/2014		0025	0025U	0029	0 050 U	00250	00500	00250	0025U	0025U	0 050 U	(ug/L)	10/17/2014	8/30/2014		0560	0890	0940	055	(Līgu)	10/2/2014	9/30/2014		150	0 50 U	0 50ju	0 50 U	0500	050U	0 SO U	814	(Jan)	9/28/2014		15 20	924/2014	60178773701	
	0 50								0 025	0 025	0 029	0050	003	0 050	0025	025	85	0050					056	069	ê	8					15	050	8	8	8	056	8	50						AC.	5
ı	050	(mg/L)	PLO2/RIDI		(ug/L)	10/6/2014	102/2/01		0 025/U	0 025lU	0 029 U	0 050 U	0 025 U	0050	00250	0 025 U	0 025 U	0 050 U	(J/gu)	10/17/2014	9/30/2014		191	075U	100	080	(L/gur)	10/2/2014	110Z/0E/B		15 0	0.50LU	0.5010		0.50	Γ		500	(Light)	B/28/2014		13 20	9/25/2014	7 02	8
	0.50								0 025	0025	0029	100	025	0050	25	025	085	0050					061	075	10	060					15	050	8	80	80	050	080	95						200	5
١	050	(mg/L	10/2/014		(ug/L)	9/27/2014	1102/22/6			0025U	0 028 U	Γ	Γ	00500	00250	Г	0 025 U	0 050 U	(ug/L)	10/17/2014	9/26/2014		251	075U	Г	060	(J/gu)	8/28/2014	9102/2014		150	050	080		050			501	(Light)	9/29/2014		11 06	923/2014	01055282109	3
	050								0 025	ŝ	ŝ	ŝ	0025	9	ŝ	ŝ	085	9	•		,		061	075	5	08		-			15	050	050	8	8	050	080	50						aiCi	5
- 1	8	(mg/L)	PLOYACIL.		(ug/L)	10/6/2014	10/2/2014		г	00250	Г	Γ	Г	Т	Τ			0 050	(John)	10/17/2014	9/30/2014		060	ı	ı	88	(ug/L)	10/6/2014	9/30/2014		150	0 50 U	0 50 U	0 50 U				50	(Light)	9/28/2014		12 15	925/2014	201787103	6
	050				İ				003	085	0029	100	0025	000	025	0025	8	0050					060	073	10	98					15	25	8	0.50	8	050	ŝ	50						al Cr	5
																															15U	0.50 U	0500		0.500	Γ		50	(ug/L)	9/29/2014			9/23/2014	ALERCALIUS	Tan Black
																															1:	9	98	8	080	050	050	50						3	5
																															150		050	Г	Γ	0.500	Γ	50	(ug/L)	9/29/2014			9/24/2014	ATTRETTER	Ton Blank
																															1.5	050	9	0.50	050	050	0.50	_					-	-	5

Parameters not lesed were not detected in samples
Results in hold faithet dennet before the MRD. I Method Detection Limit
MDL. Method Detection Limit
Flags and Qualities
U. Availyte was not detected at or above the Method Detection Limit (MDL)
U. Availyte was not detected at or above the Method Detection Limit (MDL) the detection limit a satimated
U. Availyte was not detected at or above the Method Detection Limit (MDL) the detection limit a satimated
U. Availyte was not detected at or above the Method Detection Limit (MDL) the detection limit a satimated value to lower of the two values a reported when the % difference between the results of two GC columns a greater than 40%
D. The theory of the two values is reported when the % difference between the results of two GC columns a greater than 40%
D. Compound analyzed at a dilution result a an estimated value

Prepared by LAB
Checked by JSI
Reviewed by AWD Date 10/21/2014 Date 10/31/2014 Date 11/17/2014

Table 4 Summary of Validated Groundwater Sample Data - Inorganics (September 2014 Sampling Event) Site R Quarterly Groundwater Monitoring Soluta Inc - Sauget Illinois

		i i		1	Т					1			
Monitoring Well		DUP 1	MDL	· DUP 2	MDL	RB 1	MDL	RB 2	MDL	FB 1	MDL	FB 2	MDL
Lab Sample ID		60178733009		60178733018	_	60178733021		60178733020		60178733010		60178733019	l
Date Sampled		9/22/2014		9/24/2014		9/24/2014		9/25/2014		9/23/2014		9/25/2014	l
Time Sampled		1. 2. 2. 1	~ ~ ~ ~ ~ ~ ~	1, 2, 4	4.4.4	15 20		13 20		11 00		12 15	
Mercury (USEPA Method 7470A)										_			
Date Prepared		10/6/2014	. 1	10/6/2014		10/6/2014		10/6/2014		10/6/2014		10/6/2014	l
Date Analyzed		10/7/2014		10/7/2014		10/7/2014		10/7/2014		10/7/2014		10/7/2014	
Analyte	CAS No	(ug/L)		(ug/L)		. (ug/L)		(ug/L)		(ug/L)		(ug/L)	
Metals (USEPA Method 6010B)													
Date Prepared		9/29/2014		9/29/2014		9/29/2014		9/29/2014		9/29/2014		9/29/2014	1
Date Analyzed		10/3/2014		10/3/2014		10/3/2014		10/3/2014		10/3/2014		10/3/2014	Į
Analyte	CAS No	(ug/L)		(ug/L)		(ug/L)		(ug/L)		(ug/L)		(ug/L)	
Banum	7440-39-3	455	0 61	891	0 61	0 61 U	0 61	10 J	0 61	0 70 J	0 61	0 61 U	0 61
Chromium	7440-47-3	0 89 U	0 89	26 J	0 89	0 89 U	0 89	0 89 U	0 89	0 89 U	0 89	0 89 U	0 89
Lead	7439-92-1	29 J	22	4.2 J	22	2 2 U	22	2 2 U	2 2	2 2 U	22	2 2 U	22
Nickel	7440-02-0	20 J	0 95	2 2 J	0 95	0 95 U	0 95	0 95 U	0 95	0 95 U	0 95	0 95 U	0 95
Silver	7440-22-4	2.0 J	14	1 4 UJ	1 4	14 U	14	1 4 U	14	1 4 U	14	14U _	1 4
Total Dissolved Solids (USEPA Method 160).1/SM 2540C)							•	_			· - · - · · · · · · · · · · · · · · · ·	
Date Analyzed	•	9/29/2014		10/1/2014		10/1/2014		10/1/2014		9/29/2014		10/1/2014	
Analyte	CAS No	(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)	
Total Dissolved Solids (TDS)	•	867	50	1060	50	15 0	50	24.0	50	5 O U	50	80	50

Parameters not listed were not detected in samples

Results in bold italics denote detections

MDL - Method Detection Limit

Flags and Qualifiers

U - Analyte was not detected at or above the Method Detection Limit (MDL)

UJ - Analyte was not detected at or above the Method Detection Limit (MDL) the detection limit is estimated

J - Result is an estimated value

 Prepared by LAB
 Date 10/21/2014

 Checked by JSI
 Date 10/31/2014

 Reviewed by AWD
 Date 11/17/2014

APPENDIX B

DATA VALIDATION REPORT

1.0 INTRODUCTION

Golder Associates Inc (Golder) validated the analytical data for the groundwater samples collected from September 22, 2014 through September 25, 2014 at Solutia Site R in Sauget, Illinois (Site) Samples were collected from a total of twelve (12) groundwater monitoring wells Field duplicate samples were collected from wells BWMW-4M and BWMW-2M. Two equipment rinsate blanks, two field blanks, and two trip blanks were prepared and shipped for laboratory analysis. The samples collected for analysis are summarized in Table 1. The samples were submitted to Pace Analytical Services, Inc. (Pace Analytical) of Florissant, Missouri, which shipped the samples to be analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), total metals, and general chemistry parameters that night to Lenexa, Kansas via courier. The samples to be analyzed for chlorinated pesticides were shipped for next day delivery to the St Rose, Louisiana facility by the Pace Analytical Service Center in Florissant, Missouri. The samples to be analyzed for chlorinated herbicides were shipped for next day delivery to the TestAmerica Savannah, Georgia facility by the Pace Analytical Service Center in Florissant, Missouri. The samples were placed into one sample delivery group (SDG) by the laboratory. The SDG is 60178733.

The samples were collected and analyzed in accordance with the <u>Field Sampling Plan for the Groundwater Migration Control System</u>, <u>Sauget Area 2 Superfund Site</u> (FSP, URS, January 2003). Samples were analyzed for VOCs, SVOCs, chlorinated pesticides, chlorinated herbicides, total metals, and general chemistry parameters. The general chemistry parameters were total organic carbon (TOC) and total dissolved solids (TDS). Analytical methods used are from U.S. Environmental Protection Agency (USEPA) document SW-846, <u>Test Methods for Evaluating Solid Waste</u>, Revision 6 contained in Final Update III August 2002 and listed below:

- VOCs were analyzed using <u>Method 8260B Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry</u>
- SVOCs were analyzed by <u>Method 8270C Semi-volatile Organic Compounds by Gas Chromatography/Mass Spectrometry</u>
- Chlorinated Pesticides were analyzed using <u>Method 8081A Organochlorine Pesticides by</u>
 Gas Chromatography
- Chlorinated Herbicides were analyzed using <u>Method 8151A Chlorinated Herbicides by GC</u>
 <u>Using Methylation or Pentafluorobenzylation Derivatization</u>
- Total metals were analyzed in accordance with <u>Method 6010B Inductively Coupled Plasma-Atomic Emission Spectrometry</u> except for mercury, which was analyzed by <u>Method 7470A</u>, <u>Mercury in Liquid Waste (Manual Cold Vapor Technique)</u>

INOVEII	ber 2014	-2-	063-9
•		parameters were analyzed using stand es contained in <u>Methods for Chemic</u>	
Data v	alidation was performed	d following the general guidelines of	Section 9.2 of the Qu
<u>Assura</u>	nce Project Plan for the	Groundwater Migration Control System	ı, Sauget Area 2 Super
<u>Site</u> (C	APP; URS, January 20	003) The QAPP specifies that the m	ost recent versions of
nationa	al data validation guidel	lines be used for data review The	following guidelines
genera	illy used [.]		
•	USEPA Contract Labo Review, EPA-540-R-08	ratory Program National Functional G -01, June 2008	uidelines for Organic
•	USEPA Contract Labora Review, EPA 540-R-04-	atory Program National Functional Guid -004, June 2008	lelines for Inorganic Da
These	documents are hereafte	r referred to as the "functional guidelin	es" If there was a co
betwee	en the functional guideline	es and the quality control criteria specifi	ed in the analytical met
the me	thod-specific criteria wer	e used. SDG (60178733) was prepar	ed as a Level 4 data re
packaç	ge containing quality cont	rol information and raw data	
Data q	ualifiers are defined ın Ta	able 2 Where quality control criteria we	re met, positive results
not qu	alified and non-detected	results were qualified "U" signifying t	hat the result is below
quantit	ation limit (organics) or de	etection limit (inorganics)	
guidelii As sp profess	nes were not met Tables ecified in the functional g sional judgment was use	e the specific instances where quality co 3 through 8 list the specific samples for guidelines, if the non-adherence to qua ed in qualification of the data. However, ction of the data may be necessary.	which qualification occu ality control criteria is s
		ualified data were summarized in table	

	•		
	November 2014	-4-	063-9678
		e MDL, then the positive result was co	nsidered a non-detect value
	(U)		
П		Golder Associates	

3.0 SEMI-VOLATILE ORGANIC COMPOUNDS

Samples were collected from twelve (12) groundwater monitoring locations and analyzed for SVOCs. Field duplicate samples were collected from wells BWMW-4M and BWMW-2M. Two equipment rinsate blanks and two field blanks were prepared and shipped for laboratory analysis. The samples collected for analysis are summarized in Table 1. The samples were submitted to Pace Analytical Services Inc., were placed into one data package or SDG (60178733), and were prepared and analyzed using SW-846 Method 8270. Samples were validated in general accordance with the functional guidelines. Results of the validation are summarized below.

3.1 Data Quality Objectives

Precision: Goals for laboratory and field precision were met, except where noted below

Accuracy Goals for accuracy were met, except where noted below

Sample Result Verification: Sample results were supported in the raw data

<u>Detection Limits</u> The detection limit goals were achieved for analyses, except where dilutions were required due to elevated levels of target analytes or matrix interference

<u>Completeness</u>: The data packages were complete for requested analyses Eighteen (18) samples were reviewed in this data set A total of 1,152 groundwater results were reported of which all were deemed valid. This results in a laboratory completeness of 100%, with an overall completeness of 100%

3.2 Major Concerns

There were no major concerns that required rejection of data

3.3 Minor Concerns

Identified below are the minor quality control concerns that required qualification of the data Refer to Table 4 for the specific samples affected by each concern

Reported results with a value greater than the method detection limit (MDL) and lower than the reporting limit (RL) were qualified with estimated values (J)

If there were two or more surrogate compounds diluted out of a sample, positive affected results were qualified (J)

When a sample was analyzed at a dilution, positive affected results were qualified (D/JD).

November 2014	-7- ·	063-9678
If there a surrogate compounds qualified (J).	exceeded the control limits, positive	affected results were
	s of the GC columns was greater than 4 I results were qualified (P/JP).	10% and the lower value
If an analyte was detected at the M	IDL, then the positive result was consid	ered a non-detect value
(0)		

	•
	November 2014 -8- 063-9678
	5.0 CHLORINATED HERBICIDES
	Samples were collected from twelve (12) groundwater monitoring locations and analyzed for chlorinated herbicides Field duplicate samples were collected from wells BWMW-4M and
	BWMW-2M. Two equipment rinsate blanks and two field blanks were prepared and shipped for laboratory analysis. The samples collected for analysis are summarized in Table 1. The samples were submitted to Pace Analytical Services, Inc. who then shipped the samples to the Savannah,
	Georgia TestAmerica facility. Samples were placed into one data package or SDG (60178733), and were prepared and analyzed using SW-846 Method 8151. Samples were validated in accordance with the functional guidelines. Results of the validation are summarized below.
	5.1 Data Quality Objectives
П	Precision. Goals for laboratory and field precision were met
	Accuracy: Goals for accuracy were met, except where noted below.
	Sample Result Venfication. Sample results were supported in the raw data Detection Limits: The detection limit goals were achieved for analyses, except where dilutions were
П	required due to elevated levels of target analytes or matrix interference
П	<u>Completeness</u> : The data packages were complete for requested analyses. Eighteen (18) samples were reviewed in this data set. A total of 162 groundwater results were reported of which all were deemed valid. This results in a laboratory completeness of 100%, with an overall completeness of 100%.
u	5.2 Major Concerns
	There were no major concerns with the sample analyses to warrant rejection of data
	5.3 Minor Concerns There were no minor concerns with the sample analyses to warrant rejection of data

u			
	November 2014	-9-	063-9678
	6.0 INORGANICS		
	•	welve (12) groundwater monitoring liles were collected from wells BWMW	ocations and analyzed for
	The samples collected for analys	o field blanks were prepared and shipposis are summarized in Table 1 The start placed into one data package or S	samples were submitted to
	prepared and analyzed using S	W-846 methods 6010 and 7470 Studelines Results of the validation are	Samples were validated in
	6.1 Data Quality Objectives		
m	Precision Goals for laboratory an	d field precision were met, except wher	re noted below.
	Accuracy Goals for accuracy wer	re met, except where noted below.	
	Detection Limits. The detection	ele results were supported in the raw da limit goals were achieved for analyse	
	were reviewed in this data set. A	es were complete for requested analys total of 180 groundwater results were aboratory completeness of 100%; with	reported of which all were
	6.2 Major Concerns		
	There were no major concerns th	at required rejection of data	
П	6.3 Minor Concerns		
П	Identified below are the minor qua	ality control concerns that required qua	lification of the data Refer
	to Table 7 for the specific samples	s affected by each concern	
	Reported results with a value gr reporting limit (RL) were qualified	eater than the method detection limit with estimated values (J)	(MDL) and lower than the
	•	d in a blank (i e. method, field, rinsate rule was applied to affected samples	•
	method detection limit and belo detects (U)	w five or ten times the blank detect	ion were qualified as non-
	•	RPD) between duplicates and their ass sults were qualified with estimated va	·

	November 2014	-10-	063-9678
		in the associated sample, or vice versive affected results and the non-detect	
		a dilution, positive affected results wer	
		-	
0			

Golder Associates

7.0 GENERAL CHEMISTRY

Samples were collected from twelve (12) groundwater monitoring locations and analyzed for TOC and TDS. Field duplicate samples were collected from wells BWMW-4M and BWMW-2M. Two equipment rinsate blanks and two field blanks were prepared and shipped for laboratory analysis. The samples collected for analysis are summarized in Table 1. The samples were submitted to Pace Analytical Service, Inc., were placed into one data package or SDG (60178733), and were prepared and analyzed using SW-846 Method 9060C and 2540C. Samples were validated in accordance with the functional guidelines. Results of the validation are summarized below.

7.1 Data Quality Objectives

Precision. Goals for laboratory and field precision were met.

Accuracy. Goals for accuracy were met.

Sample Result Verification. Sample results were supported in the raw data

Detection Limits: The detection limit goals were achieved for analyses.

<u>Completeness</u> The data packages were complete for requested analyses Eighteen (18) samples were reviewed in this data set. A total of 36 groundwater results were reported of which all were deemed valid. This results in a laboratory completeness of 100%; with an overall completeness of 100%.

7.2 Major Concerns

There were no major quality control concerns identified that required rejection of data

7.3 Minor Concerns

Identified below are the minor quality control concerns that required qualification of the data Refer to Table 8 for the specific samples affected by each concern

When a sample was analyzed at a dilution, positive affected results were qualified (D).

			ı
	November 2014	-12-	063-9678
	8.0 SUMMARY		
		lected during the September 2014 sampling the with USEPA functional guidelines. Alt	
	Where a positive result was	control criteria that were not achieved, the qualified as estimated, the analyte should be a second as the second	uld be considered present
		alified as an estimated reporting limit shoul am, although the limit itself may not be pre	
		,	
п		Golder Associates	

TABLE 1 SAMPLE POINT IDENTIFICATIONS AND SDG NUMBERS **GROUNDWATER MIGRATION CONTROL SYSTEM SAUGET AREA 2 SUPERFUND SITE** SEPTEMBER 2014 GROUNDWATER SAMPLING EVENT

SAMPLE POINT I.D.	DATE SAMPLED	VOLATĪLĒ ORGANICS	SEMIVOLATILE ORGANICS	PĒSTIĆIDĒS	HERBIČIDĒS	TOTAL INORGANICS	GENERAL CHEMISTRY
Groundwater Sample	es						
BWMW-1S	9/25/2014	60178733	60178733	60178733	60178733	60178733	60178733
BWMW-1M	9/25/2014	60178733	60178733	60178733	60178733	60178733	60178733
BWMW-1D	9/25/2014	60178733	60178733	60178733	60178733	60178733	60178733
BWMW-2S	9/24/2014	60178733	60178733	60178733	60178733	60178733	60178733
BWMW-2M	9/24/2014	60178733	60178733	60178733	60178733	60178733	60178733
BWMW-2D	9/24/2014	60178733	60178733	60178733	60178733	60178733	60178733
BWMW-3S	9/23/2014	60178733	60178733	60178733	60178733	60178733	60178733
BWMW-3M	9/23/2014	60178733	60178733	60178733	60178733	60178733	60178733
BWMW-3D	9/23/2014	60178733	60178733	60178733	60178733	60178733	60178733
BWMW-4S	9/22/2014	60178733	60178733	60178733	60178733 、	60178733	60178733
BWMW-4M	9/22/2014	60178733	60178733	60178733	60178733	60178733	60178733
BWMW-4D	9/22/2014	60178733	60178733	60178733	60178733	60178733	60178733
Field Duplicates		-					
DUP-1	9/22/2014	60178733	60178733	60178733	60178733	60178733	60178733
DUP-2	9/24/2014	60178733	60178733	60178733	60178733	60178733	60178733
Field Blanks							
FIELD BLANK 1	9/23/2014	60178733	60178733	60178733	60178733	60178733	60178733
FIELD BLANK 2	9/25/2014	60178733	60178733	60178733	60178733	60178733	60178733
Trip Blanks							
TRIP BLANK	9/23/2014	60178733	60178733	60178733	60178733	60178733_	60178733
TRIP BLANK	9/24/2014	60178733	60178733	60178733	60178733	60178733	60178733
Rinsate Blanks							
RINSATE BLANK-1	9/24/2014	60178733	60178733	60178733	60178733	60178733	60178733
RINSATE BLANK-2	9/25/2014	60178733	60178733	60178733	60178733	60178733	60178733

Notes:

General Chemistry included total organic carbon (TOC) and total dissolved solids (TDS).
 MS/MSD performed on sample BWMW-1M.

Checked by: LAB Reviewed by: AWD

TABLE 2 VALIDATION QUALIFIER DEFINITIONS GROUNDWATER MIGRATION CONTROL SYSTEM SAUGET AREA 2 SUPERFUND SITE SEPTEMBER 2014 GROUNDWATER SAMPLING EVENT **Organics** U - The analyte was analyzed for but not detected. J - The analyte was detected and the result is considered an estimated value. D - The analyte was detected at a dilution. Р - The difference between the values of the GC columns was greater than 40% and the lower value is reported. - Compound analyzed at a dilution; result is considered an estimated value. JD JP - The difference between the values of the GC columns was greater than 40% and the lower value is reported. The result is considered an estimated value. Analyte was not detected at or above the Method Detection Limit (MDL); the detection limit is UJ estimated. **Inorganics** U The analyte was analyzed for but not detected. J - The analyte was detected and the result is considered an estimated value. D - The analyte was detected at a dilution. Analyte was not detected at or above the Method Detection Limit (MDL); the detection limit is UJ estimated. Checked by: LAB Reviewed by: AWD

VOLATILE ORGANIC COMPOUNDS DATA QUALIFIER SUMMARY GROUNDWATER MIGRATION CONTROL SYSTEM SAUGET AREA 2 SUPERFUND SITE SEPTEMBER 2014 GROUNDWATER SAMPLING EVENT

DATE: SEPTEMBER 2014
PROJECT NAME: Solutia Site R

MATRIX: Groundwater ANALYSIS: VOC

SAMPLE DELIVERY GROUP NUMBERS: 60178733

REVIEWER: Lori Bindner

QUALITY CONTROL ISSUE	COMPOUND(S)	QUALIFIER	SAMPLES AFFECTED
Reported result greater than the method detection limit and lower than the reporting limit	Acetone, Benzene and Vinyl chlonde	J	BWMW-1D, BWMW-4S, DUP-2, and RB-1
The RPD between the duplicate and associated sample is greater than 50%, or analyte was detected in either the duplicate or the sample but not both	cıs-1,2 Dıchloroethene, Toluene and Xylene	J/UJ	BWMW-2M and DUP-2
Reported at MDL	Benzene	U	BWMW-2S
Compounds analyzed at a dilution	Benzene and Chlorobenzene	D	DUP-1 and DUP-2

Checked by LAB Reviewed by AWD

SEMI-VOLATILE ORGANIC COMPOUNDS DATA QUALIFIER SUMMARY GROUNDWATER MIGRATION CONTROL SYSTEM SAUGET AREA 2 SUPERFUND SITE SEPTEMBER 2014 GROUNDWATER SAMPLING EVENT

DATE: SEPTEMBER 2014
PROJECT NAME: Solutia Site R

MATRIX: Groundwater ANALYSIS: SVOC

SAMPLE DELIVERY GROUP NUMBERS: 60178733

REVIEWER: Lori Bindner

QUALITY CONTROL ISSUE	COMPOUND(S)	QUALIFIER	SAMPLES AFFECTED
Reported result greater than the method detection limit and lower than the reporting limit	Acenaphthane, Anthracene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(k)fluoranthene, 4-Chloroaniline, 2- Chlorophenol, Chrysene, Fluoranthene, Fluorene, Phenanthrene, Pyrene, Phenol, Naphthalene, 2-Chlorophenol, 1,4- Dichlorobenzene, 2,4-Dimethyphenol, 3&4 Methylphenol, 1,3-Dichlorobenzene, and 1,2- Dichlorobenzene	J	BWMW-1S, BWMW-1M, BWMW-1D, BWMW-2S, BWMW-2M, BWMW-2D, BWMW-3S, BWMW-3M, BWMW-3D, BWMW-4S, BWMW-4M, BWMW-4D, DUP-1, DUP-2, FB-1, and RB-2
Surrogates diluted out	4-Chloroaniline, 2,4-Dimethyphenol, 3&4 Methylphenol, 1,2-Dichlorobenzene, 1,3- Dichlorobenzene, and 1,4-Dichlorobenzene	J/JD	BWMW-2M, BWMW-2D and DUP-2
Compounds analyzed at a dilution	4-Chloroaniline and 1,2-Dichlorobenzene	D/JD	BWMW-1M, BWMW-2M, BWMW-2D, BWMW-3M, BWMW-3D, BWMW-4M, BWMW-4D, DUP-1, and DUP-2

Checked by LAB Reviewed by AWD

CHLORINATED PESTICIDES DATA QUALIFIER SUMMARY GROUNDWATER MIGRATION CONTROL SYSTEM SAUGET AREA 2 SUPERFUND SITE SEPTEMBER 2014 GROUNDWATER SAMPLING EVENT

DATE: SEPTEMBER 2014
PROJECT NAME: Solutia Site R

MATRIX: Groundwater

ANALYSIS: Chlorinated Pesticides

SAMPLE DELIVERY GROUP NUMBERS: 60178733

REVIEWER: Lori Bindner

QUALITY CONTROL ISSUE	COMPOUND(S)	QUALIFIER	SAMPLES AFFECTED
Reported result greater than the method detection limit and lower than the reporting limit	4-4'-DDD, 4-4'-DDE, delta-BHC, gamma-BHC, Dieldnn, Endnn, Endosulfan I, Endosulfan II, Endrin aldehyde, Endosulfan sulfate, alpha- Chlordane, gamma-Chlordane, and Heptachlor	J	BWMW-1S, BWMW-1M, BWMW-2M, BWMW-2D, BWMW-3S, BWMW-3M, BWMW-3D, BWMW-4S, BWMW-4M, BWMW-4D, DUP-1, and DUP-2
The RPD between the duplicate and associated sample is greater than 50%, or analyte was detected in either the duplicate or the sample but not both	beta-BHC, delta-BHC, alpha-Chlordane, Dieldrin, Endosulfan II, Endosulfan sulfate, Endrin aldehyde, gamma-Chlordane, and Heptachlor	J	BWMW-2M, BWMW-4M, DUP-1, and DUP-2
Surrogates exceeded control limits	4-4'-DDE, 4-4'-DDT, alpha-BHC, Endosulfan I, Endosulfan II, and Endosulfan sulfate	1/01	BWMW-3D
Reported at MDL	alph-BHC and Endnn aldehyde	U	BWMW-1M and BWMW-3M
The difference between the values of the GC columns was greater than 40% and lower value was reported	4-4'-DDE, beta-BHC, alpha-Chlordane, Dieldrin, Endosulfan I, Endosulfan II, Endosulfan sulfate, Heptachlor epoxide, and gamma-Chlordane	P/JP	BWMW-1M, BWMW-2M, BWMW-2D, BWMW-3S, BWMW-3M, BWMW-3D, BWMW-4M, DUP-1, and DUP-2

Checked by LAB Reviewed by AWD

CHLORINATED HERBICIDES DATA QUALIFIER SUMMARY GROUNDWATER MIGRATION CONTROL SYSTEM SAUGET AREA 2 SUPERFUND SITE SEPTEMBER 2014 GROUNDWATER SAMPLING EVENT

DATE: SEPTEMBER 2014
PROJECT NAME: Solutia Site R

MATRIX: Groundwater

ANALYSIS: Chlorinated Herbicides

SAMPLE DELIVERY GROUP NUMBERS: 60178733

REVIEWER: Lori Bindner

QUALITY CONTROL ISSUE	COMPOUND(S)	QUALIFIER	SAMPLES AFFECTED
None	None	None	None

Checked by LAB Reviewed by AWD

METALS DATA QUALIFIER SUMMARY GROUNDWATER MIGRATION CONTROL SYSTEM SAUGET AREA 2 SUPERFUND SITE SEPTEMBER 2014 GROUNDWATER SAMPLING EVENT

DATE: SEPTEMBER 2014
PROJECT NAME: Solutia Site R

MATRIX: Groundwater ANALYSIS: Metals

SAMPLE DELIVERY GROUP NUMBERS: 60178733

REVIEWER: Lori Bindner

QUALITY CONTROL ISSUE	COMPOUND(S)	QUALIFIER	SAMPLES AFFECTED
Reported result greater than the method detection limit and lower than the reporting limit	Arsenic, Barium, Chromium, Lead, Nickel, and Silver	J	BWMW-1S, BWMW-1M, BWMW-1D, BWMW-2S, BWMW-2M, BWMW-2D, BWMW-3S, BWMW-3M, BWMW-3D, BWMW-4S, BWMW-4M, BWMW-4D, DUP-1, DUP-2, FB-1, and RB-2
Detection in blank (5X rule)	Copper	U	BWMW-1S, BWMW-1M, BWMW-1D, BWMW-2S, BWMW-2M, BWMW-2D, BWMW-3M, BWMW-3D, BWMW-4S, BWMW-4D, and DUP-1
The RPD between the duplicate and associated sample is greater than 50%, or analyte was detected in either the duplicate or the sample but not both	Lead and Silver	וחור	BWMW-2M, BWMW-4M, DUP-1, and DUP-2
Compounds analyzed at a dilution	Arsenic	D	BWMW-3S

Checked by LAB Reviewed by AWD

GENERAL CHEMISTRY DATA QUALIFIER SUMMARY GROUNDWATER MIGRATION CONTROL SYSTEM SAUGET AREA 2 SUPERFUND SITE SEPTEMBER 2014 GROUNDWATER SAMPLING EVENT

DATE: SEPTEMBER 2014 Project No.: 063-9678

PROJECT NAME: Solutia Site R MATRIX: Groundwater

MATRIX: Groundwater ANALYSIS: TDS and TOC

SAMPLE DELIVERY GROUP NUMBERS: 60178733

REVIEWER: Lorl Bindner

QUALITY CONTROL ISSUE	COMPOUND(S)	QUALIFIER	SAMPLES AFFECTED
Compounds analyzed at a dilution	тос	D	BWMW-1S, BWMW-2S, BWMW-2M, BWMW-2D, BWMW-3M, BWMW-3D, and DUP-2

Checked by LAB Reviewed by AWD